Efficient Spatial Classification Using Decoupled Conditional Random Fields
نویسندگان
چکیده
We present a discriminative method to classify data that have interdependencies in 2-D lattice. Although both Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) are well-known methods for modeling such dependencies, they are often ineffective and inefficient, respectively. This is because many of the simplifying assumptions that underlie the MRF’s efficiency compromise its accuracy. As CRFs are discriminative, they are typically more accurate than the generative MRFs. This also means their learning process is more expensive. This paper addresses this situation by defining and using “Decoupled Conditional Random Fields (DCRFs)”, a variant of CRFs whose learning process is more efficient as it decouples the tasks of learning potentials. Although our model is only guaranteed to approximate a CRF, our empirical results on synthetic/real datasets show that DCRF is essentially as accurate as other CRF variants, but is many times faster to train.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملTitle of Thesis: Modeling Spatial Correlations for Effective Discriminative Clas- Sifiers Modeling Spatial Correlations for Effective Discriminative Classifiers
Classification — i.e. categorizing data instances into pre-defined categories — is an interesting and challenging task. Many real world problems involve classification, in domains such as medical informatics, image analysis, and text tagging. We consider the challenge of learning a classifier from data. This is especially challenging when data instances are correlated. Here, we focus on learnin...
متن کاملSegmenting Brain Tumors Using Pseudo-Conditional Random Fields
Locating Brain tumor segmentation within MR (magnetic resonance) images is integral to the treatment of brain cancer. This segmentation task requires classifying each voxel as either tumor or nontumor, based on a description of that voxel. Unfortunately, standard classifiers, such as Logistic Regression (LR) and Support Vector Machines (SVM), typically have limited accuracy as they treat voxels...
متن کاملEfficient Learning of Spatial Patterns with Multi-Scale Conditional Random Fields for Region-Based Classification
Automatic image classification is of major importance for a wide range of applications and is supported by a complex process that usually requires the identification of individual regions and spatial patterns (contextual information) among neighboring regions within images. Hierarchical conditional random fields (CRF) consider both multi-scale and contextual information in a unified discriminat...
متن کاملMultitemporal Crop Type Classification Using Conditional Random Fields and Rapideye Data
The task of crop type classification with multitemporal imagery is nowadays often done applying classifiers that are originally developed for single images like support vector machines (SVM). These approaches do not model temporal dependencies in an explicit way. Existing approaches that make use of temporal dependencies are in most cases quite simple and based on rules. Approaches that integra...
متن کامل